
Vulnerability Management
for Embedded Systems
Using Open Source
September 9, 2021 - Version 3.0

A Timesys E-Book

Vulnerability Management for Embedded System Using
Open Source — A Timesys E-Book

© 2020 Timesys Corporation
Corporate Headquarters
1905 Boulevard of the Allies
Pittsburgh, PA 15219
UNITED STATES
T: +1.412.232.3250
Toll-free: 1.866.392.4897
www.timesys.com

Contents were previously published by Timesys Corporation
in on-line blog and web site publications in 2019 and 2020.

For more information about Timesys and security for
embedded open source systems, please visit us at
www.timesys.com.

https://www.timesys.com
https://www.timesys.com

Vulnerability Management for Embedded Systems Using Open Source | 3

Contents

04
01 | Introduction:

Managing Embedded System Product
Cybersecurity Risk

11
02 | CVE Monitoring & Management:

Guidance on Best Practices

17
03 | Process Template:

Managing Security Maintenance
in the Product Lifecycle

21
04 | Timesys Vigiles:

Vulnerability Management & Mitigation for
Stronger Embedded System Security

4

The security of products you bring to market can no longer be a secondary consideration.

Hundreds of new software vulnerabilities are announced every week by vulnerability tracking services such
as the listings of Common Vulnerabilities and Exposures (CVEs) in the National Vulnerability Database
(NVD). The NVD is maintained by the US National Institute of Standards and Technology (NIST).

End-user customers are increasingly cautious about deploying products that might expose them to
vulnerability exploits. Security controls, update procedures, patching, regulatory compliance and security
standard compliance now rank high in the requirements issued by customers seeking to buy and deploy
embedded systems.

These two trends mean that makers of embedded system products need to take an active approach to
assessing and mitigating security problems in software in products they develop. Device makers need to
focus on security when products are designed and when they are managed throughout the product
lifecycle.

Industrial control systems, medical devices, automotive systems, Internet of Things (IoT), Industrial Internet
of Things (IIoT), smart devices and many other embedded systems products must be secure. The software
running on these devices needs to be protected from exploits that can compromise system integrity, put
confidential information at risk of exposure, or impact system performance. In some cases, device security
failures can have a direct impact on the health or safety of users.

This e-book details important trends in embedded system software security, both in how system software
is designed and built to be secure, and how security is maintained after products are released to customers.

An essential consideration is how you, as a product development organization, assess and manage security
risk across your product lines.

Security in the product development process
In the traditional software development lifecycle (SDLC), security is often a release gating assessment. It’s
a review conducted when proposed final products are being evaluated for release to market.

01
Managing Embedded System
Product Cybersecurity Risk	

Security’s Traditional Position in Software Development Lifecycle

Embedded Software
Frozen Until

New Generation

Traditional
Security
Review

Limited
Release SecurityTestDevelopDesign GA

Release

Vulnerability Management for Embedded Systems Using Open Source | 5

Much like Quality Assurance on a final release candidate, such security assessments evaluate the release
candidate’s compliance with security requirements and highlight any deficiencies for correction before
product release sign-off.

After the security review was passed, the product software would be released to the market. Generally
speaking, embedded system software would be frozen at that point until the next generation was
developed and released.

This traditional approach to security creates three problems:

1.	 The world is not frozen, even if your software is. Besides the explosion in vulnerabilities and exploits in
recent years, many other aspects of how your products are deployed and used will have major impacts
on the security of these systems. Embedded system products are increasingly connected to networks
for management, monitoring and maintenance. Remote updates and patching are widespread
requirements. Updates to the Linux kernel and to third-party components may occur that require
security maintenance for your product.

2.	 The traditional approach to security at the end of the SDLC means that software is inflexible and
unable to be adapted as security requirements evolve over time. Customer and market security
requirements are ever changing and are often critical to customer acceptance. Each industry and
application may have a unique set of security requirements to meet and new ones may be imposed
at any time as the patterns of security vulnerabilities and exploits change. Creating an architecture
that meets these requirements, and allows adaptation to new ones, should be considered at product
design stages.

3.	 Competition and market changes are compressing development cycles. The rise of IoT, IIoT, data
analytics architectures, smart devices and other market changes are increasing pressure to bring
products to market faster. This means development cycles are being compressed, often by adjusting
product scopes or using third-party software such as open source components to cut development
time. This means that the traditional security review at the end of the development process can
become a bottleneck that slows time to market.

Limited
Release SecurityTestDevelopDesign GA

Release

Changing Market Security Requirements

End customer security requirements:

•	 Rising in complexity
•	 Increasingly required for product

acceptance
•	 Must be baked into product from start

FDA guidelines

HIPAA privacy

SCADA security
requirements

IEC 62304

ICS, IIoT security
requirements

6

Security Expands: Shift Left and Stretch Right
These factors mean that security needs to change from taking place as a single review and assessment at
the end of development prior to product release.

Instead, security must become a continuous, developer-driven process at every stage of product
development and continuing after product release.

In development process terms, this means that security needs to “shift left” and move earlier in the SDLC.
At the same time, it needs to “stretch right” as a continuous process that extends beyond release through-
out a product’s maintained lifetime.

This concept of expanded security across the SDLC has several important implications for your product
development and maintenance processes:

•	 Security tools must be aligned with development workflows and environments.

•	 Highly accurate vulnerability identification is needed at all SDLC stages, across all versions, all
components, and all branches of your product’s software.

•	 Your development teams should build products using the latest, most secure third-party components.

•	 Your product maintenance process should include continuous vulnerability monitoring,filtering and
triaging, along with tracking availability of fixes and a quick mitigation process.

•	 Obtaining accurate vulnerability data and cutting the chance for false positives can minimize impact
on your development team.

As these points imply, security can and should be turned into a proactive part of your product develop-
ment and maintenance process, as opposed to a reactive activity that takes place only when things go
wrong.

Making the change to proactive security will have the effect of decreasing overall risk across your product
lines.

Security’s Expanded Role in SDLC

Stretch Right

Limited
ReleaseTest MaintenanceDevelopDesign GA

Release

Security

Shift Left: Security in design, development, testing

Vulnerability Management for Embedded Systems Using Open Source | 7

Managing product security risk
Today’s most advanced product development organizations focus on lowering the security risk across
their product lines, to decrease the chance that a vulnerability will be exploited in a deployed product.

The process for managing product line security risk considers these factors:

•	 What is the level of risk of a vulnerability exploit you will accept?

•	 What is the effort and cost to assess the exposure to known vulnerabilities?

•	 What is the level of accuracy of the exposure level?

•	 What is the effort and cost to mitigate identified vulnerabilities?

•	 How quickly can you mitigate identified vulnerabilities?

Determining the level of risk that your organization will accept involves many factors that are specific to
your market, your product strategies, your customers’ requirements and so on.

At the simplest level, a known, exploitable vulnerability that is present in products across your entire
customer base represents the highest level of risk. Unless there are mitigating circumstances around de-
ployment modes, there are likely very few companies that will consider this an acceptable level of risk.

The opposite extreme is the elimination of all exposure to all known exploitable vulnerabilities across
your products deployed in all your customers. While this lowest level of risk seems to be an ideal case,
the level of effort and cost to achieve it could be extreme. Cost-benefit analysis can help to determine the
right balance once you hit a point of diminishing returns.

Determining your strategy and level of investment in assessing vulnerability exposure should consider
two main factors.

First is the level of accuracy of the exposure assessment to known vulnerabilities compared to the level
of effort required.

Second is how quickly you can achieve mitigation of a known vulnerability compared to the level of effort
to more rapid mitigation.

The following charts illustrate the correlation between level of effort and better results.

Exposure Assessment Effort & Cost

Le
ve

l o
f E

ffo
rt

&
C

os
t

High

High

CVE feeds, security
bulletins, issue trackers,

mailing lists

Tools + manual
analysis of CVEs

in feed

Open source tools
to monitor CVEs

Fewer Sources

Highest
Risk

Moderate
Risk

Exposure Assessment Accuracy

Lowest
Risk

More Sources

8

In the curve for Exposure Assessment Effort and cost, the lowest level of risk is achieved when you
incorporate more sources of vulnerabilities data into your assessment and employ tools to assist with
analyzing, tracking and filtering vulnerabilities.

But as the curve shows, higher accuracy comes at a higher cost and level of effort.

Similarly, a security best practice is to mitigate identified vulnerabilities as rapidly as possible. As shown in
the next chart, the highest level of risk occurs when you devote no resources to mitigating vulnerabilities.
The lowest level of risk is achieved when you assign teams to analyze and mitigate identified vulnerabili-
ties before an exploit is released in the wild. In other words, the more proactive the mitigation process, the
lower the risk of an exploit and breach.

But mitigation speed demands ever-increasing investment of effort and cost to drive risk lower.

Achieving lower risk at lower cost
In our work with embedded system product developers around the world, we have seen four best
practices that enable development teams to jump the curves illustrated above and achieve lower risk at a
lower level of investment.

These best practices are:

•	 Automated Software Composition Analysis and SBOM generation

Accurately determining the level of exposure to a given vulnerability requires that you first accurately
understand exactly what is in your product. A Software Bill of Materials (SBOM) is basically an
inventory of your software’s components.

Virtually every product on the market today contains a great deal of code sourced from third parties.
In many cases, these are open source components that development teams find and integrate into
their products to reduce the time spent on developing common features and functions.

But this practice means it can be a challenge to fully understand exactly which components and which
versions are integrated in the product.

Speed of Mitigation

Mitigation Effort & Cost

Le
ve

l o
f E

ffo
rt

&
C

os
t

High

High

Proactive manual
mitigation before

exploits hit

Reactive manual
mitigation when

exploits hit

No mitigation
of CVEs

No Process

Highest
Risk

Moderate
Risk

Lowest
Risk

Continuous Process

Vulnerability Management for Embedded Systems Using Open Source | 9

Generating and managing your SBOMs can be a very time-consuming manual task that drives up
the level of effort for security monitoring. But Software Composition Analysis (SCA) tools are now
available that can automatically analyze your software and generate an SBOM. The SBOM in turn
becomes your guide for analyzing reported vulnerabilities to determine if any of your software
components are exposed.

•	 Automated, augmented feeds and filtering

As illustrated in the Exposure Assessment chart, more accurate assessments are produced when you
incorporate more vulnerability feeds and reports into your monitoring process.

But it can become very costly to manually monitor the many available sources and then filter these
lists to pinpoint only those that pertain to your product’s SBOM.

The best practice is to automate the monitoring and filtering process as much as possible. That
means establishing a continuous process for taking in vulnerability feeds, normalizing the outputs,
and comparing them to the project SBOMs your team is working on. Then your team is notified
when a vulnerability hit occurs. The result is much more efficient monitoring and analysis because
your team can focus on only those vulnerabilities that matter.

•	 Collaboration & sharing across teams

A developer-driven security management process is the most effective method for ensuring security
is baked into products from the outset and maintained after release.

To allow development teams to most efficiently address vulnerabilities, their work on exposure
assessment and vulnerability mitigation should be built around a collaborative process and tools
that permit easy communication, documentation of findings and tasks, and sharing of analysis and
mitigation actions across teams and across projects.

•	 Automation-assisted analysis & mitigation steps

Similar to using automation for software analysis and vulnerability filtering, a development team’s
analysis of a given vulnerability and potential mitigation of it can be made much more efficient with
automated reporting of available patches and updates.

For example, a given third-party product component may be affected by a particular vulnerability.
An automated scan of the releases of the components listed in the SBOM can flag a release that
addresses the vulnerability. The development team immediately knows how to mitigate the
vulnerability and has greatly accelerated mitigation speed without expending additional effort.

Jumping the curve in exposure assessment and mitigation speed
Employing the four best practices described above will enable your security management process to
break the correlation between level of effort and better results.

10

The chart below illustrates how using automated SCA tools, automated filtering and similar steps to
augment monitoring across more vulnerability reporting sources can enable your process to “jump the
curve.” The result is better exposure assessment for lower risk at a lower level of effort and cost.

The same benefits can be achieved with mitigation as shown in the chart below. You can drive risk
lower at lower cost by establishing automation-assisted mitigation analysis and a collaborative security
management process.

The process enables your team to move from a reactive approach to vulnerabilities, scrambling to respond
when exploits hit, to a proactive approach that enables customers to be protected typically before an
exploit is available.

The net result of introducing automation into your exposure assessment and vulnerability mitigation
process is a significant reduction in product security risk without causing costs to explode. This in turn
means your customers will have less exposure to vulnerability exploits and will be able to rely on your
products as secure.

Exposure Assessment Accuracy

Jump the Curve: Exposure Assessment

Le
ve

l o
f E

ffo
rt

&
C

os
t

High

High

CVE feeds, security
bulletins, issue trackers,

mailing lists

Tools + manual
analysis of CVEs

in feed

Open source tools
to monitor CVEs

Fewer Sources

Highest
Risk

Moderate
Risk

Lowest
Risk

Lowest
Risk

+
Lowest
Cost

More Sources

• Automated CVE monitoring
• SCA for automated SBOM
• Curated, augmented ists
 for fewer false positives
• Automated filtering

Speed of Mitigation

Jump the Curve: Mitigation

Le
ve

l o
f E

ffo
rt

&
C

os
t

High

High

Proactive manual
mitigation before

exploits hit

Reactive manual
mitigation when

exploits hit

No mitigation
of CVEs

No Process

Highest
Risk

Moderate
Risk

Lowest
Risk

Lowest
Risk

+
Lowest

Cost

Continuous Process

• Automation-assisted fix /
 update analysis
• Collaboration tools for
 cross-team mitigation
• Automated logging &
 sharing of fixes across
 projects

Vulnerability Management for Embedded Systems Using Open Source | 11

Timesys’ Director of Engineering, Akshay Bhat, presented a session on Open Source Security at the
Embedded Linux Conference North America 2019. For this Q&A interview, Timesys VP of Marketing Adam
Boone asked Akshay to share his views on the challenges and best practices for maintaining security in
Open Source Embedded System products.

Adam Boone: Why should product developers and engineering managers be familiar with CVEs and
make an effort to monitor them?

Akshay Bhat: I think everyone recognizes it is important to bring products to market that are secure and
that stay secure throughout their deployment lifecycles.

Who wants to deliver a product that is going to put a customer or user at risk of a data breach, system
hijacking, or other security issue now or two years from now?

This is especially important today as embedded systems products are being deployed in greater numbers
than ever before, and in locations and configurations we have never seen before. Plus, these systems are
supporting critical processes and essential services we all depend on. Think about the Internet of Things,
Industrial Internet of Things, industrial control systems, utility control systems and so on.

And perhaps most critically, more and more of these embedded systems contain Linux and other open
source components. While open source is a fantastic way to get products to market quickly, you need to
make sure these components are secure so that customers are not put at risk.

So anyone working on the software for an embedded system product today needs to know about CVEs
that are announced and maintained in the NVD.

The challenge, of course, is how much effort you can expend in monitoring, managing and fixing
vulnerabilities if they happen to affect your products.

While many of us know about the NVD, there actually are many other potential sources of important
vulnerabilities, such as manufacturer security bulletins, security mailing lists, and bug lists. And there
are what you might call silent bug fixes in which a manufacturer fixes a bug without issuing a public
notification.

02
CVE Monitoring & Management:
Guidance on Best Practices	

“And perhaps most critically, more and more of these embedded
systems contain Linux and other open source components. While
open source is a fantastic way to get products to market quickly,
you need to make sure these components are secure so that
customers are not put at risk.”

12

In a perfect world, you would be tracking all these sources of security info and then perform static analysis
of your software to assess the security risk. But the amount of time and resources invested in that would
be massive. There is what they call the point of diminishing returns. At a certain point, a vulnerability poses
such a low level of risk that it makes no sense to expend any time to investigate and fix it.

The challenge of how to deploy your resources and how to prioritize security issues is even greater when
you consider that there are something like 300 new vulnerabilities disclosed in the NVD every week.

So we advise our customers to make security maintenance a part of the product development and
product maintenance processes, and central to that effort is monitoring and managing CVEs.

Adam: That’s sound advice. Overall, what approaches do you see developers and engineering managers
taking to monitoring and addressing CVEs?

Akshay: Well, the easiest approach is to do nothing at all and hope for the best. But that’s clearly a
non-starter and, very frankly, irresponsible.

A common approach to dealing with CVEs is to monitor, analyze and address them manually, in a Do-It-
Yourself (DIY) process.

While that might seem straight-forward, it’s really the least effective and most costly approach, when you
consider the time and effort it takes to analyze 300 CVEs every week. On top of that, the same team needs
to be monitoring patches and software versions of all components across all your products.

And oh, by the way, these same people probably are involved in actually delivering product and enhance-
ments to market. So they need to find some time to work on that too, right?

It’s really overwhelming to do the manual approach and expect to have a clear view of vulnerabilities
affecting your products because there are so many moving parts.

Adam: What does that mean? What are the moving parts?

Akshay: On the one hand, there are the contents of your product itself. You need to have current informa-
tion on all packages and versions across all the products in development and in maintenance or support.
That of course can change at any time, so you need a way to constantly monitor your own product
components.

On the other hand, there is the flood of CVEs that you need to review, sift through and match to your
product contents.

Then there are the updates, patches, upgrades and enhancements released by third parties who support
the components in your product.

“False positives in particular can be a real problem if you are
trying to do this all manually. Picture having your developers
expending cycles on what seems to be a critical security flaw, only
to find out an outdated record created a false positive alert about
a vulnerability match with your product. It’s critical to avoid
wasting time on such wild good chases.”

Vulnerability Management for Embedded Systems Using Open Source | 13

All three of these sources of data need to be monitored and analyzed as shown below.

When you arrive at a list of the CVEs affecting your products, you then need to triage the list, analyzing
them to determine which are the most pressing to address because they pose the greatest risk for your
products based on their configurations and how they are deployed.

All these things need to be accomplished and repeated in a consistent way. And that’s before you have
actually addressed even a single vulnerability.

Adam: CVE monitoring is built in to Yocto. Doesn’t that make the process simpler if you use Yocto?

Akshay: That can help. But the process of pinpointing the specific components that are affected in your
builds is still very cumbersome in Yocto’s CVE readouts.

And even worse, our analysis of Yocto CVE monitoring shows an excessive number of false positives
and CVE misses. That’s because much of the NVD data has naming inconsistencies, simple typos in data
records, outdated information or missing data.

Any of these can cause Yocto CVE monitoring to report a CVE match where none exists or miss CVEs that
should have been a match.

False positives in particular can be a real problem if you are trying to do this all manually. Picture having
your developers expending cycles on what seems to be a critical security flaw, only to find out an
outdated record created a false positive alert about a vulnerability match with your product. It’s critical
to avoid wasting time on such wild goose chases.

Adam: So let’s say we have assembled a list of CVEs we believe affect our product line. What’s next?
How do you triage and prioritize them?

Akshay: The step of triaging the CVEs is just like in the hospital or medical care setting. Emergency room
doctors will evaluate patients coming in and move those with the most dire, pressing conditions to the
top of the list for care.

With CVEs, you analyze all the CVEs in that batch and figure out which ones pose the biggest risk and
must be fixed right away. Others might be less pressing, with less likelihood of causing a security
problem for a customer. And others might be not important at all and can be safely ignored.

Really this prioritization approach is how you turn security maintenance into a manageable process.
Say you want to do weekly security reviews of vulnerabilities, which we have seen as a common best
practice. Filtering and prioritizing the CVEs is how you can cut through and make sense of the hundreds
of vulnerabilities reported each week. Our security maintenance services include tools to make this
analysis and triage simple and fast.

Do-It-Yourself (DIY) CVE monitoring process

14

So, for example, when you do this triage analysis, you start with the Common Vulnerability Scoring System,
or CVSS. That’s the commonly used model for scoring a given CVE in a standard way to arrive at a severity
rating.

CVSS ratings may rank Low, Medium, High or Critical. The rating then provides some good initial guidance
for your comparison and prioritization of one CVE versus another.

But then you also need to consider a lot of other factors.

For example, does the CVE’s attack vector matter in your product’s deployment? In other words, for an
attacker to exploit the CVE, will they be able to launch an attack against your product using that vector?

A common example is a CVE that uses the network attack vector, such as gaining unauthorized remote
access to a device. If your product is not going to be deployed as a networked device, or will be on its
own entirely isolated, air-gapped network, then this CVE may not be as important to address immediate-
ly, even if it has a Critical CVSS rating. It’s still important to address such vulnerabilities, such as ones that
could be exploited during a product update that introduces new code. But the triage process enables
you to differentiate between exploit risks that are pressing and immediate and those that are less likely
to occur.

Similarly the configuration of your system and components may make a given CVE irrelevant because a
process or function required for an exploit of the CVE is not activated in your product. For example, some
medical devices have been compromised in recent years because of exploits taking advantage of remote
software updates as the attack vector. These vulnerabilities do not apply if no remote update function
is available, or if it has been disabled, as was the step the device manufacturers took to mitigate the vul-
nerability.

Another consideration for triaging your list of CVEs is whether a known exploit of a CVE is in the wild.

Sometimes a CVE comes to light because a hacker has already built an exploit to take advantage of a
vulnerability that they found on their own. Unfortunately, it might take a damaging security breach in a
customer for the CVE to be identified and reported.

But many CVEs are found and reported before that happens because security researchers, bug bounty
programs, and responsible disclosure programs are notifying vendors, vulnerability list managers, and
security database authorities. That gives product developers a head-start to address CVEs before an
exploit appears to take advantage of them.

Similarly, a reason to prioritize CVEs higher is whether an easily applied patch is already available and
known and whether a single CVE fix can address multiple of your products that have components in com-
mon. That’s low-hanging fruit to fix with minimal effort and so may make sense to take care of quickly.

“Similarly, a reason to prioritize CVEs higher is whether an easily
applied patch is already available and known and whether a
single CVE fix can address multiple of your products that have
components in common. That’s low-hanging fruit to fix with
minimal effort and so may make sense to take care of quickly.”

Vulnerability Management for Embedded Systems Using Open Source | 15

Adam: Along those lines, you mentioned monitoring patches and software upgrades as one of the
moving parts to be managed in a security maintenance program. What’s the challenge there?

Akshay: Patch management alone is always challenging, especially if you have a large number of open
source components. You need to evaluate when to apply a patch, how the patch affects other
components, what testing needs to be conducted, whether a patched component can be backported
to earlier versions, and so on.

But add to that the pressure of dealing with a high severity CVE, one that might be putting your
customers at risk right now, and patch management gets even more challenging.

We guide our customers to follow a consistent process in a CVE-driven patching scenario. Once a
given CVE has been identified, your team will investigate the fixes and so may review logs, bug tracker
reporters, and other documentation distributed via the mailing lists for upstream packages.

The right fix will depend on many factors. There might be a patch for a set of issues including the
specific CVE. Or it may make more sense to upgrade software versions because a newer version is not
affected by the CVE.

We always urge our developer customers to upgrade to the latest version of software components
whenever possible. The latest version will address CVEs and possibly other security vulnerabilities that
might not be part of the CVE dictionary. This is particularly true for the Linux kernel where upgrading to
the latest LTS release is the best bet to keep it secure.

But you also need to consider earlier versions of your code and whether any fixes can be easily
backported without breaking product functionality.

The decisions become even more complex if patches or upgrades become available for multiple
components in your product at the same time. Analyzing potential conflicts and regression testing
become essential steps to manage that type of scenario.

Adam: So is it fair to say that time is the enemy when it comes to monitoring CVEs and addressing
them?

Akshay: Yes, time is the enemy in more ways than one.

For example, there often is a gap of days or weeks between the time a vulnerability has been first
disclosed, when it has been fully analyzed, and when a patch has been issued.

DIY CVE Patching

16

That’s your “vulnerability window.” It’s the period during which the black-hat hacking community has
become aware of the vulnerability and is working hard on designing exploits to take advantage of it.
If the exploit emerges and spreads before the full analysis is available or the patches are issued, then you
may be fully vulnerable to a damaging attack.

Adam: Given all this complexity, what’s your advice to engineering managers looking to boil all this
down into a simple, manageable process?

Akshay: The first step is recognizing that you need that process at all.

Security maintenance and mitigation management workflows should be a central part of all product
maintenance reviews and processes. Surprising numbers of companies don’t take that active approach
but only focus on CVEs when there is a major problem, like a customer with a security breach.

Once you have established it, the process itself should feature a few key elements.

First, you need tools for monitoring and filtering CVEs based on your actual, accurate product compo-
nents. As I mentioned earlier, you need a monitoring process less prone to false positives and CVE misses
than the Yocto CVE monitoring feature.

Then you need shared workspace and communication tools to support CVE investigation, triage, prioritiza-
tion and collaboration. That should include the ability for teams to share findings, status and actions,
and especially to learn from one another as the process matures. Your process also should include reports
and dashboards that enable you to see the big picture and understand the CVE counts by product, the
progress in fixing them, and the changes over time.

Then, you need to automate the patch monitoring and management process as much as possible, to
accelerate the mitigation of vulnerabilities. That involves automatically identifying patches and upgrades
that pertain to the specific product components and enabling your team to assess them as a fix for a
particular CVE.

At Timesys we have built these capabilities into Vigiles, our vulnerability monitoring and management
service.

Your team can try Vigiles for free here: https://www.timesys.com/security/vigiles/

About the interview participants

Akshay Bhat, Director of Engineering, Security Solutions, has experience with embedded systems that spans a broad range of
industries with a focus on board bring-up, driver development and software security. Akshay received his MS in Electrical Engineering
from NYU Polytechnic University.

Adam Boone, Vice President of Marketing, has 25 years of experience in marketing, communications, strategy, and media, including
networking, security and telecom companies. He led marketing for two Sequoia Capital start-ups with successful exits. Adam has
worked with dozens of start-ups and early stage companies to engineer growth. He holds an MBA from Arizona State University
and completed the Competitive Marketing Strategy Program at University of Pennsylvania’s Wharton School.

“Security maintenance and mitigation management workflows
should be a central part of all product maintenance reviews
and processes. Surprising numbers of companies don’t take that
active approach but only focus on CVEs when there is a major
problem, like a customer with a security breach.”

Vulnerability Management for Embedded Systems Using Open Source | 17

Too often it seems the first notification of a software vulnerability comes from an affected customer or
the negative publicity surrounding a high-profile data breach.

Then follows the mad scramble to mitigate the vulnerability, notify customers, update products in the
field and so on.

This reactive approach to vulnerability management for your embedded system products simply doesn’t
fly in today’s heightened vulnerability environment.

Instead, proactive product security maintenance is today’s industry best practice. Companies that
develop and maintain embedded system products are increasingly making security maintenance a key
focus for product maintenance and enhancement processes.

Proactive security maintenance and vulnerability management boil down to questions of risk
management.

Is it better to face the risk of a catastrophic security failure in one of your customers, with all the
accompanying damage that entails?

Or is it better to identify vulnerabilities as soon as they emerge and give your team a running start
toward addressing them, distributing fixes, and protecting your customers?

Open Source Best Practice: Proactive Security
Open source systems such as embedded Linux and other open source components are increasingly
common in embedded systems. The benefits of faster time-to-market and fewer development cycles
for broader functionality are undeniable.

But open source also brings with it a basic truth: You are incorporating something into your product
that you did not make.

And as with any component acquired from a third party and integrated into your product, you must be
diligent about the component’s impact on your device’s security posture.

This boils down to the need to continuously monitor for vulnerabilities that may affect that component
and create an attack vector that can be exploited by an attacker.

Proactive security maintenance and vulnerability monitoring must be central parts of the product
maintenance and enhancement process.

03

Process Template:
Managing Security Maintenance
in the Product Lifecycle	

18

Process Template: Security Maintenance Steps
Security maintenance and vulnerability monitoring for embedded products can be broken into four
primary steps that can be integrated into your product maintenance processes throughout your prod-
uct lifecycle. Each step looks to answer several questions or address certain tasks that will enable your
security maintenance process to proactively address vulnerabilities in an efficient way.

1.	 Vulnerability Monitoring & Filtering

Tasks at the monitoring stage of security maintenance look to answer questions like:

•	 Do newly reported vulnerabilities affect our products in development or in maintenance?

•	 Which specific versions of our product software or third-party components in our software are
affected by a given vulnerability?

•	 Are older vulnerabilities now relevant to our products because of a change in the product, such
as a component software update or how it is deployed?

Our Vigiles vulnerability monitoring and management service enables your team to easily filter out
irrelevant vulnerabilities and false positives, permitting them to quickly focus on the vulnerabilities
that really matter.

2.	 Vulnerability Triage & Prioritization

Once the relevant vulnerabilities in a given period of your product maintenance cycle have been
identified, the next step is to assess the severity of them for your specific use cases and then
prioritize fixing them.

Security Maintenance Steps

•	 Scan thousands
of vulnerabilities

•	 Filter to identify
relevant ones

•	 Assess risk of
each vulnerability

•	 Prioritize batches
for analysis and fix

MitigateAnalyzeTriageMonitor
& Filter

•	 Analyze threat and
risk of
vulnerabilities

•	 Determine fix
options

•	 Mitigate threat and
fix vulnerabilities:
patch, update,
code, other steps

Vulnerability Management for Embedded Systems Using Open Source | 19

So, for example, a particular vulnerability may be given a high severity score under the Common
Vulnerability Scoring System (CVSS) that is widely used for assessing vulnerability risk. But the
attack vector of that vulnerability may not be exposed in your product, meaning its severity for your
particular configuration is low.

Questions to answer at the Triage & Prioritization stage include:

•	 Which of the identified vulnerabilities are the highest risk for our customers and products, given
product configurations, deployment modes, number of units in production deployment, and
exposed attack vectors?

•	 Which vulnerabilities affect multiple of our products, or may be common across many versions
of our products because of replicated components?

•	 Which vulnerabilities are believed to be already addressed by a patch or update from us or an
upstream supplier?

Which vulnerabilities appear to require new development or enhancements to fix? Can multiple
vulnerabilities or multiple product lines potentially be addressed by a common enhancement or
update or patch?

3.	 Analysis & Remediation Planning

Communication and a clear division of tasks are key for efficient analysis and mitigation of individual
vulnerabilities. This requires tools that support collaboration and easy documentation sharing
among users and across teams.

This type of collaborative analysis and planning is especially important if it is believed that a common
patch may apply to fix a vulnerability across multiple product lines. Teams operating in silos may waste
cycles on redundant mitigation steps.

Questions being addressed at this stage include:

•	 Which known updates or patches for in-house or third-party software will address the
vulnerability?

•	 Does the vulnerability require immediate steps to be taken by customers to reduce risk of an
exploit or security breach? What are those steps and how should notification be conducted?

•	 If a vulnerability requires development work to fix, when can it be addressed in the development
cycle and how will that impact other projects, testing, and so on?

•	 If a vulnerability demands generating and distributing a patch immediately, what are the require-
ments and plan for development and distribution?

Our Vigiles vulnerability monitoring and management service enables your team to easily collaborate
and share information about vulnerabilities, available fixes, and investigation findings.

20

4.	 Mitigation

The final step in an effective security maintenance process is the mitigation of the identified
vulnerabilities.

Some mitigation steps may be temporary measures, such as notifying customers and requiring them
to take a unit offline or change its configuration until a patch can be issued.

Other mitigation steps will be more involved, requiring development work, incorporating new
versions of components into the system, testing, issuing updates, and so on.

Our Vigiles vulnerability monitoring and management service can automatically identify suggested
fixes for vulnerabilities by matching vulnerabilities with versions or patches that address them and
flagging these fixes for your team.

Learn more at: https://www.timesys.com/security/vigiles/

https://www.timesys.com/security/vigiles/

Vulnerability Management for Embedded Systems Using Open Source | 21

A giant list of vulnerabilities does little to help you ensure your products are secure.

What matters is how you filter the list, triage the vulnerabilities, and mitigate the ones that pose the
greatest risk.

In addition, Gartner reports that attackers are increasingly targeting open source components, essentially
getting a foothold earlier in the software supply chain. This means that downstream product makers who
incorporate open source components into their products are exposing their products and customers to
potential compromise and higher risk.

The Timesys Vigiles Security Monitoring & Management Service enables embedded system developers
to maintain stronger product security throughout their product lifecycles. Vigiles automates, simplifies
and accelerates vulnerability monitoring, exposure assessment and mitigation. Features and capabilities
include:

Vulnerability Management & Mitigation Optimized for Embedded
Vigiles integrates with embedded system software development tools including Yocto, Buildroot and
Timesys Factory, along with other SDLC and CI/CD tools using APIs. The service provides end-to-end
workflow support for developer-driven vulnerability tracking, investigation and mitigation.

04

Timesys Vigiles: Vulnerability
Management & Mitigation for
Stronger Embedded System Security

22

Vigiles is optimized for embedded systems and filters vulnerabilities based on a project’s Linux kernel
configuration and U-Boot configuration, which removes vulnerabilities affecting features not being used.
This reduces vulnerability investigation and triage tasks by 75 percent on average.

The service reports only those vulnerabilities affecting packages installed on your target. It automatically
tracks CVEs already fixed in your Yocto/Buildroot implementation and Includes support for reporting
CPU/SoC vulnerabilities.

Vulnerability mitigation is expedited because Vigiles automatically identifies “suggested fixes” such as
patches or updates of components that will mitigate vulnerabilities.

Flexible, intuitive team collaboration and sharing tools ensure your mitigation efforts are efficient and fast.
Powerful and convenient “comparison” capabilities give you quick insight into what has changed between
builds.

Software Composition Analysis (SCA) for Embedded
Vigiles’ SCA functionality will automatically generate a Software Bill of Materials (SBOM) for Yocto,
Buildroot and Timesys Factory projects.

Now you can understand exactly which open source third-party components are in your products and
which vulnerabilities pertain to them. Features include detailed vulnerability reports, trend reports,
summaries and a searchable vulnerability database.

This significantly reduces the level of effort to sift through and analyze vulnerabilities because your team
can focus on only those that matter.

Vulnerability Management for Embedded Systems Using Open Source | 23

Superior Vulnerability Data
Vigiles delivers superior, highly accurate vulnerability data, augmenting the feed from the NVD with
multiple additional vulnerability feeds. The Timesys security team curates vulnerability data, which
reduces false positives and produces a 40 percent improvement in data accuracy compared to the NVD.

You can receive expedited notification of newly reported vulnerabilities as much as four weeks earlier
than from the NVD.

Simple One-Stop-Shop Solution
Vigiles encompasses vulnerability monitoring, triage and mitigation in one easy-to-use solution. Intuitive
prioritization and filtering mechanisms get your team going without extensive training or configuration
hassles.

The complete vulnerability management workflow is at your fingertips, including history, reports, notes,
vulnerability whitelisting and more.

Free Version Available
Vigiles is available in three versions including a free service providing basic vulnerability monitoring. Learn
more: https://www.timesys.com/security/vigiles-vulnerability-monitoring-patch-notification/

1905 Boulevard of the Allies • Pittsburgh, PA 15219 • UNITED STATES
T: +1.412.232.3250 • Toll-free: 1.866.392.4897

www.timesys.com

Rev. 03-20210909A

https://www.timesys.com

