LinuxLink Login   |   1.866.392.4897 |   sales@timesys.com    |  Contact Us          
Secure boot on Snapdragon 410

Secure boot on Snapdragon 410

Qualcomm Snapdragon processors support secure boot which ensures only authenticated software runs on the device. By configuring the processor for secure boot, unauthorized or modified code is prevented from being run. The authenticity of the image is verified by use digital signatures and certificate chain.

Secure Boot process overview

On Qualcomm processors the first piece of software that runs is called Primary BootLoader (PBL) and it resides in immutable read-only-memory (ROM) of the processor. By configuring the processor for secure boot, PBL can verify the authenticity of the Secondary BootLoader (SBL) before executing it. Continue reading “Secure boot on Snapdragon 410” »

Meltdown and Spectre vulnerabilities

Meltdown and Spectre vulnerabilities

Updated on 8/14/2018

Google Project Zero team discovered a method to read privileged memory from user space by utilizing CPU data cache timing to leak information out of mis-speculated execution. Variants of this issue are known to affect many modern processors, including certain processors by Intel, AMD and ARM. For more details refer to this blogpost.

So far, there are three known variants of the issue:

Variants 1 & 2 are referred to as Spectre and Variant 3 as Meltdown.

Timesys has been monitoring vendor websites and open source mailing lists regarding affected CPUs and software mitigation strategies, and below are our findings:

Continue reading “Meltdown and Spectre vulnerabilities” »

Secure Boot and Encrypted Data Storage

Secure Boot and Encrypted Data Storage

What is secure boot?

Secure boot ensures only authenticated software runs on the device and is achieved by verifying digital signatures of the software prior to executing that code. To achieve secure boot, processor/SoC support is required. In our experience, some of the more secure boot friendly processors with readily available documentation are NXP i.MX/QorIQ Layerscape, Xilinx Zynq, Atmel SAMA5, TI Sitara and Qualcomm Snapdragon series. Some TI Sitara processors (AM335x) might involve TI factory programming of signing keys and custom part numbers.

Continue reading “Secure Boot and Encrypted Data Storage” »

Securing Embedded Linux Devices

Securing Embedded Linux Devices

Embedded devices have unique security needs ranging from IP protection, anti-cloning / anti-counterfeit capability, device software integrity, user data protection, securing network communication, device authentication and ability to run only trusted applications. A wide range of open source technologies are available that can help implement the aforementioned security requirements. However, it is not always apparent which mechanisms are best suited for a given use case, resulting in a steep learning curve. This blog series aims to give a high-level overview of the different methods to secure your product and help accelerate your trusted software deployment.

Continue reading “Securing Embedded Linux Devices” »

Software / Firmware Update Design Considerations

Software / Firmware Update Design Considerations

The Internet of Things (IoT) has quickly led to the deployment of ubiquitous, unattended devices throughout our homes, offices, factories and public spaces. In this continuously expanding connected world of devices and IoT, the need to update/upgrade your product’s software/firmware is a certainty. There is no single software update approach that fits all, but there are key questions you should consider when designing your approach. They are: Why, When, What and How.

Continue reading “Software / Firmware Update Design Considerations” »