LinuxLink Login   |   1.866.392.4897 |   sales@timesys.com

Secure Boot and Encrypted Data Storage

What is secure boot?

Secure boot ensures only authenticated software runs on the device and is achieved by verifying digital signatures of the software prior to executing that code. To achieve secure boot, processor/SoC support is required. In our experience, some of the more secure boot friendly processors with readily available documentation are NXP i.MX, Xilinx Zynq, and Atmel SAMA5 series. Some TI Sitara processors support secure boot, but might involve TI factory programming of signing keys and custom part numbers.

Continue reading “Secure Boot and Encrypted Data Storage” »

Securing Embedded Linux Devices

Embedded devices have unique security needs ranging from IP protection, anti-cloning / anti-counterfeit capability, device software integrity, user data protection, securing network communication, device authentication and ability to run only trusted applications. A wide range of open source technologies are available that can help implement the aforementioned security requirements. However, it is not always apparent which mechanisms are best suited for a given use case, resulting in a steep learning curve. This blog series aims to give a high-level overview of the different methods to secure your product and help accelerate your trusted software deployment.

Continue reading “Securing Embedded Linux Devices” »

Software / Firmware Update Design Considerations

The Internet of Things (IoT) has quickly led to the deployment of ubiquitous, unattended devices throughout our homes, offices, factories and public spaces. In this continuously expanding connected world of devices and IoT, the need to update/upgrade your product’s software/firmware is a certainty. There is no single software update approach that fits all, but there are key questions you should consider when designing your approach. They are: Why, When, What and How.

Continue reading “Software / Firmware Update Design Considerations” »