

Secure Boot, Chain of Trust and Data Protection

Akshay Bhat

Topics

- Introduction to secure boot
- Chain of trust
- Protecting data
 - Secure key storage
- Best practices and lessons learnt

Secure boot overview

Provides

- Authentication (unauthorized images not allowed to run)
- Integrity (authorized images can not be 'tampered' with)

Digital signatures for authentication

- Private key -> used for signing
- Public key -> used to verify

Image/data encryption

- Confidentiality
- Anti-cloning/counterfeit
 - Unique keys required

Bootloader Authentication

Microprocessors

Performed by built-in ROM code

Microcontrollers

- User implemented code (eg: mbed TLS)
 - Flash locked from modification

Host PC: Signature generation

Device: Signature verification

Hash must match to boot!

Components of Linux device

- Bootloader
 - First stage (eg: SPL, SBL, ARM-TF)
 - Second stage (eg: u-boot, barebox, little kernel)
- Kernel
- Device tree
- Root filesystem
 - User data partition
- Optional
 - Secure OS (eg: op-tee)
 - Firmware (eg: FPGA, FreeRTOS on M3/M4)

Chain of trust

SoC specific mechanism extended

Chain of trust

- Open source mechanisms
- FIT (Flattened Image Tree) option in u-boot

Protecting userspace components

Block level

- dm-crypt (encrypted)
- dm-verity (signed read only)
- dm-integrity (encrypted and authenticated)

Filesystem level

- fscrypt (ext4, ubifs etc)
- ecryptfs

Secure key storage

- No user input on most devices
- SoC specific mechanism
 - Keys stored in secure fuses (OR)
 - Keys encrypted using unique master key (eg: i.MX)
- Trusted Execution Environment
 - ARM TrustZone
- TPM
 - Seal keys using PCR registers
- Crypto chip
 - Beware of I2C bus attacks

Additional Security Measures

- Hardware security
 - JTAG
 - Tamper protection
- Known vulnerabilities
 - Processor specific (eg: CVE-2017-7936)
 - Bootloader specific (eg: CVE-2018-18439)
- Secure OTA update process
 - Signed and/encrypted OTA images
 - Server authentication

Other considerations

- Trade-offs
 - Boot time
 - Filesystem performance
- Securing the private and encryption keys
 - Consider dedicated signing server
- Key revocation strategy

Design documents and Test plan

List of software components, protection mechanism

Component	Scheme	Crypto	Key storage	Key unique?
U-boot	Signed, vendor	RSA	Public key in OTP	No
Kernel	Signed, openssl	RSA	Public key in u-boot	No
RFS	Encrypted	AES	AES key in OTP	Yes

Negative test cases

- Tampered images
- Unsigned images
- Signed with different key

Hardware considerations

Microcontrollers

User programmable flash locked regions

Microprocessors

ROM support for secure boot

Nice to have

- Secure key storage
- Key revocation
- Hardware accelerated ciphers
- Customer programmable keys
- Easy access to signing tools
- Tamper protection

Take away

- Design in security early
- Select the right hardware components
- Implement security at all software layers
- Continue to monitor vulnerabilities

timesys®

Questions?

Thank you Visit us: STMicroelectronics Booth Hall 4A | Stand 138

