
Using Yocto to Secure Your Device:
From Development to Production

Kevin Chau, Timesys Corporation

Yocto Project Summit, 2021.11

2 Yocto Project® | The Linux Foundation®

Overview: Security in Stages

● Early Development Analysis

• Threat Modelling

● Pre-production

• Integrating Security

• Supporting Infrastructure

● Production and Ongoing Support

3 Yocto Project® | The Linux Foundation®

Overview: Security in Stages

● Early Development Analysis

○ Threat Modelling

● Pre-production

○ Integrating Security

○ Supporting Infrastructure

● Production and Ongoing Support

4 Yocto Project® | The Linux Foundation®

Threat Modelling

Lots of different modelling methods available:

• STRIDE
• DREAD
• OWASP
• PASTA

Scope is important, what is critical for protection?

5 Yocto Project® | The Linux Foundation®

STRIDE

• Spoofing
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privilege

6 Yocto Project® | The Linux Foundation®

STRIDE: A Simplified Example

• Spoofing
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privilege

7 Yocto Project® | The Linux Foundation®

Spoofing/Tampering: Concerns

• What are we concerned about in the Yocto software
ecosystem?
• Authenticity - We pull from online repositories; want to

make sure that we don’t pull from bad actors
• Repeatability - At some point, we want whatever we pull

from upstream to always be the same; AUTOREV is a
particular concern

8 Yocto Project® | The Linux Foundation®

Denial of Service: Concerns

• If upstream servers go down, we don’t want that to
prevent us from building an image for a release
• More malicious: DDoS attack against your organization or

one of the key software sources necessary for your build

9 Yocto Project® | The Linux Foundation®

How do Offline Builds Help?

• Offline Builds - Build using a local set of files, no network
access required
• Requires us to do at least one build with network access to

pull down all of the required sources
• Keep that set of files and use that as our “master copy” of

the required sources
• Allows us to be certain that any future builds will all start

with the same sources

10 Yocto Project® | The Linux Foundation®

Offline Builds: Creating Your Source Archive

Run your build as normal

bitbake <image>

Fetching the sources

You do need external network
access to download all of the
sources necessary for your
project. These will be
collected in your downloads
folder, DL_DIR.

BB_GENERATE_MIRROR_TAR
BALLS = "1"
bitbake harden-image-minimal
--runonly=fetch

Setting your configuration to
no network

 SOURCE_MIRROR_URL ?=
"file:///home/your-download-dir/"
 INHERIT += "own-mirrors"
 BB_NO_NETWORK = "1"

You can remove
BB_GENERATE_MIRROR_TARBALL
S = “1”.

11 Yocto Project® | The Linux Foundation®

Offline Builds: Dealing with AUTOREV

• Don’t use it!
• If you do, you’ll find issues when building offline

12 Yocto Project® | The Linux Foundation®

Offline Builds: Your Obligations

• The previous benefits come at the expense of putting the
onus of traceability on you
• You have to keep this directory full of sources somewhere

and ensure its integrity
• Depending on your security requirements, may need to

independently audit the downloaded source

13 Yocto Project® | The Linux Foundation®

Offline Builds: Validating Your Sources

Yocto has PGP signed tags
[host poky]$ git verify-tag hardknott-3.3.4
gpg: Signature made Thu 18 Nov 2021 05:00:03
PM EST
gpg: using RSA key
4C00139568D89646CB3CB7855C6807D1C2797673
gpg: Can't check signature: No public key
[host poky]$ gpg2 --search-keys
0x4C00139568D89646CB3CB7855C6807D1C2797673
gpg: data source: https://162.213.33.9:443
(1) Yocto Build and Release
<releases@yoctoproject.org>
 4096 bit RSA key 87EB3D32FB631AD9,
created: 2014-10-30
Keys 1-1 of 1 for
"0x4C00139568D89646CB3CB7855C6807D1C2797673".
Enter number(s), N)ext, or Q)uit >

14 Yocto Project® | The Linux Foundation®

Offline Builds: Validating Your Sources

PGP signatures or checksums for your software sources

• Linux Kernel
• Mesa

https://www.kernel.org/category/signatures.html
https://gitlab.freedesktop.org/mesa/mesa/-/commit/bdf94921c02b82e0d5f67d7c1ee0aacbce336056

15 Yocto Project® | The Linux Foundation®

Offline Builds: Validating Your Sources

Yocto can enforce checksums:

• May be helpful if your project uses internally released
software

16 Yocto Project® | The Linux Foundation®

Overview: Security in Stages

● Early Development Analysis

○ Threat Modelling

● Pre-production

○ Integrating Security

○ Supporting Infrastructure

● Production and Ongoing Support

17 Yocto Project® | The Linux Foundation®

Security Features: Image Contents

• Yocto recipes are customizable, can add security oriented
features easily with meta-layers and bbappends
• meta-security

• Features added by meta-security
• dm-verity
• IMA/EVM
• Kernel Module Signing

18 Yocto Project® | The Linux Foundation®

Setting Up a Basic Build with meta-security

host:~/example/$ git clone git://git.yoctoproject.org/poky
host:~/example/$ git clone https://git.openembedded.org/meta-openembedded
host:~/example/$. poky/oe-init-build-env
host:~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-oe
NOTE: Starting bitbake server...
host:~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-python
NOTE: Starting bitbake server...
host:~/example/build$ bitbake-layers add-layer
../meta-openembedded/meta-networking
NOTE: Starting bitbake server...
host:~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-perl
NOTE: Starting bitbake server...
host:~/example/build$ bitbake-layers add-layer ../meta-security

19 Yocto Project® | The Linux Foundation®

Setting Up a Basic Build with meta-security

host:~/example/build$ bitbake-layers add-layer ../meta-security/meta-hardening
NOTE: Starting bitbake server…
host:~/example/build$ echo "DISTRO_FEATURES += \" security \"" >> conf/local.conf
host:~/example/build$ bitbake harden-image-minimal
host:~/example/build$ ls tmp/deploy/images/qemux86-64/
bzImage
harden-image-minimal-qemux86-64.ext4

Meta-security provides a “harden-image-minimal” image
with basic security changes to “core-image-minimal”

20 Yocto Project® | The Linux Foundation®

Key Management / Signing Infrastructure

• We’ve generated the system image and root file system,
now how do we provide authenticity?
• Public Key Cryptography

• How do we keep the private key private?
• Secure Build Machine
• Signing Server

21 Yocto Project® | The Linux Foundation®

Implementing the “Secure Build Machine” Method

Let’s assume that we have our secure build machine

We want to create our own meta-layer that will integrate
the signing steps into our Yocto build so we only have to run
one command to get our desired output files

22 Yocto Project® | The Linux Foundation®

Creating a Custom Image with Signing Tasks

bi
tb

ak
e

cu
st

om
-im

ag
e-

si
gn

ed

custom-image-signed.
do_image_complete

run.do_image

run.do_image_ext4

run.do_image_tar

23 Yocto Project® | The Linux Foundation®

Creating a Custom Image with Signing Tasks

bi
tb

ak
e

cu
st

om
-im

ag
e-

si
gn

ed

custom-image-signed.
do_image_complete

run.do_image

run.do_image_ext4

run.do_image_tar

run.do_image_sign

24 Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

require recipes-core/images/harden-image-minimal.bb

python __anonymous () {
bb.build.addtask('do_image_sign', 'do_image_complete', 'do_image_ext4', d)

}

PRIVATE_KEY = "${TOPDIR}/private.pem"

do_image_sign() {
 cd ${WORKDIR}/
 openssl dgst -sha256 deploy-${PN}-image-complete/${PN}-${MACHINE}.ext4 > hash
 openssl rsautl -sign -inkey ${PRIVATE_KEY} -keyform PEM -in hash >
deploy-${PN}-image-complete/${PN}-${MACHINE}.ext4.sig
}

25 Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

bitbake custom-image-signed
wc -c tmp/deploy/images/qemux86-64/custom-image-signed-qemux86-64.ext4.sig
 256 tmp/deploy/images/qemux86-64/custom-image-signed-qemux86-64.ext4.sig

26 Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

cat tmp/work/qemux86_64-poky-linux/custom-image-signed/1.0-r0/temp/log.task_order
do_prepare_recipe_sysroot (3787003): log.do_prepare_recipe_sysroot.3787003
do_rootfs (3787019): log.do_rootfs.3787019
do_flush_pseudodb (3793153): log.do_flush_pseudodb.3793153
do_write_qemuboot_conf (3793154): log.do_write_qemuboot_conf.3793154
do_image_qa (3793159): log.do_image_qa.3793159
do_image (3793166): log.do_image.3793166
do_image_ext4 (3793173): log.do_image_ext4.3793173
do_image_tar (3793174): log.do_image_tar.3793174
do_image_sign (3793214): log.do_image_sign.3793214
do_image_complete (3793217): log.do_image_complete.3793217
do_populate_lic_deploy (3793231): log.do_populate_lic_deploy.3793231
do_image_sign (3793891): log.do_image_sign.3793891
do_image_complete (3793906): log.do_image_complete.3793906
do_populate_lic_deploy (3793918): log.do_populate_lic_deploy.3793918

27 Yocto Project® | The Linux Foundation®

Overview: Security in Stages

● Early Development Analysis

○ Threat Modelling

● Pre-production

○ Integrating Security

○ Supporting Infrastructure

● Production and Ongoing Support

28 Yocto Project® | The Linux Foundation®

Deploying Image Files: Secure Build Machine

• We’ve generated the signature file for our rootfs and our
kernel; now we need some way for our developers to get
the files
• Integrate with an external CI platform
• SFTP server
• SSH/SCP

29 Yocto Project® | The Linux Foundation®

Deploying Image Files: Signing Server

Deployment to Device or to
Developers

Push to an automated test
server and/or to a location
developers can access.

Yocto Build

In this workflow, we generate
the relevant kernel image and
RFS with a typical bitbake
command.

bitbake <image>

Sending the Files to the Server

We would send it to our server
in the manner expected, along
with our developer
credentials.

30 Yocto Project® | The Linux Foundation®

Overview: Security in Stages

● Early Development Analysis

○ Threat Modelling

● Pre-production

○ Integrating Security

○ Supporting Infrastructure

● Production and Ongoing Support

31 Yocto Project® | The Linux Foundation®

Support: Choosing an LTS Release

Yocto has special LTS releases; use them if possible:

● Dunfell
● Kirkstone

https://wiki.yoctoproject.org/wiki/Releases

32 Yocto Project® | The Linux Foundation®

Over-the-air Firmware Updates, New Releases

Different strategies for new firmware images based on other
security choices:

• File-based Authentication: fs-verity, IMA/EVM
• meta-swupdate
• meta-rauc
• meta-updater

• Block-based Authentication
• A/B schemes

33 Yocto Project® | The Linux Foundation®

A/B Schemes

• The target system must validate the binary files against their
signatures:
• (Kernel) Image.sig -> Image
• (RFS) RFS.sig -> custom-image-signed.ext4

• We can package these together into an archive, which is
our update bundle

34 Yocto Project® | The Linux Foundation®

CVE Management

• Maintaining support means tracking and addressing
vulnerabilities
• Yocto project maintains its own CVE Checker
• Timesys provides one as well, meta-timesys

https://www.google.com/url?q=https://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/cve-check.bbclass&sa=D&source=editors&ust=1637704462964000&usg=AOvVaw1IaemKo0Tqi5C9qlFNy73X
https://github.com/TimesysGit/meta-timesys

35 Yocto Project® | The Linux Foundation®

References

For further reading:

• https://www.timesys.com/pdf/Timesys-Security-Primer-for-IoT-Embedded-Devices.pdf
• https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
• https://owasp.org/www-community/Threat_Modeling
• https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
• https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoproject

qs.html
• https://elinux.org/images/3/31/Comparison_of_Linux_Software_Update_Technologie

s.pdf
• Designing OSTree based embedded Linux systems with the Yocto Project

https://www.timesys.com/pdf/Timesys-Security-Primer-for-IoT-Embedded-Devices.pdf
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://owasp.org/www-community/Threat_Modeling
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://elinux.org/images/3/31/Comparison_of_Linux_Software_Update_Technologies.pdf
https://elinux.org/images/3/31/Comparison_of_Linux_Software_Update_Technologies.pdf
https://www.youtube.com/watch?v=3i48NbAS2jU

Timesys Security Survey
https://docs.google.com/forms/d/e/1FAIpQLSf4LlAZ0rhEvrRcSBATs36FJx9Daop1q5

w50-4PLIZ6nwloGQ/viewform

https://docs.google.com/forms/d/e/1FAIpQLSf4LlAZ0rhEvrRcSBATs36FJx9Daop1q5w50-4PLIZ6nwloGQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf4LlAZ0rhEvrRcSBATs36FJx9Daop1q5w50-4PLIZ6nwloGQ/viewform

https://www.twitch.tv/yocto_project
https://twitter.com/yoctoproject
https://stackoverflow.com/search?q=yocto+project
https://www.linkedin.com/company/yocto-project/
https://www.youtube.com/user/TheYoctoProject/

