PROJECT DATION

yocto ‘ CJLin
Using Yocto to Secure Your Device:

From Development to Production

0
00
sstime
000

Yocto Project Summit, 2021.11

Overview: Security in Stages

e Early Development Analysis
e Threat Modelling
e Pre-production

e Integrating Security

e Supporting Infrastructure

e Production and Ongoing Support

Yocto Project® | The Linux Foundation®

Overview: Security in Stages

e Early Development Analysis

o Threat Modelling

Yocto Project® | The Linux Foundation®

Threat Modelling

Lots of different modelling methods available:

STRIDE

DREAD

OWASP
PASTA

Scope is important, what is critical for protection?

Yocto Project® | The Linux Foundation®

STRIDE

Spoofing

Tampering
Repudiation
Information Disclosure
Denial of Service
Elevation of Privilege

Yocto Project® | The Linux Foundation®

STRIDE: A Simplified Example

e Spoofing
e Tampering

e Denial of Service

Yocto Project® | The Linux Foundation®

Spoofing/Tampering: Concerns

e What are we concerned about in the Yocto software
ecosystem?
e Authenticity - We pull from online repositories; want to
make sure that we don’t pull from bad actors
e Repeatability - At some point, we want whatever we pull

from upstream to always be the same; AUTOREV is a
particular concern

Yocto Project® | The Linux Foundation®

Denial of Service: Concerns

e If upstream servers go down, we don’t want that to

prevent us from building an image for arelease
e More malicious: DDoS attack against your organization or
one of the key software sources necessary for your build

Yocto Project® | The Linux Foundation®

How do Offline Builds Help?

e Offline Builds - Build using a local set of files, no network

access required
e Requiresustodo at least one build with network access to

pull down all of the required sources
e Keep that set of files and use that as our “master copy” of

the required sources
e Allows usto be certain that any future builds will all start

with the same sources

Yocto Project® | The Linux Foundation®

Offline Builds: Creating Your Source Archive

Setting your configuration to
no network

Fetching the sources

Run your build as normal

You do need external network SOURCE_MIRROR_URL ?= bitbake <image>
access to download all of the "file:///home/your-download-dir/"
sources necessary for your INHERIT += "own-mirrors"
project. These will be BB_NO_NETWORK = "1"
collected in your downloads
folder, DL_DIR. You can remove
BB_GENERATE_MIRROR_TARBALL
BB_GENERATE_MIRROR_TAR S="1"
BALLS ="1"

bitbake harden-image-minimal
--runonly=fetch

Yocto Project® | The Linux Foundation®

Offline Builds: Dealing with AUTOREV

e Don'tuseit!
e [fyoudo,you’ll findissues when building offline

Yocto Project® | The Linux Foundation®

Offline Builds: Your Obligations

e The previous benefits come at the expense of putting the

onus of traceability on you
e You have to keep this directory full of sources somewhere
and ensure its integrity
e Depending on your security requirements, may need to
independently audit the downloaded source

Yocto Project® | The Linux Foundation®

Offline Builds: Validating Your Sources

Yocto has PGP signed tags

Tagging for yocto-3.3.2

----- BEGIN PGP SIGNATURE-----

iQEZzBAABCAAMFIiEETAAT1IWjY1kbLPLeFXGgHOcIS5dnMFAmME JpbgACgkQXGgHRC TS
dnOQBATE8CMcvWZ72DGRhgVnl1cgvl+v1PPzOVXxQQ2tSBSEGVfumBwTvpF+L/z8Bk
SMlelLyImR393s2K+QI1bVUEqQxwLy9Ghsry2yufmRqhGNCs50RB6tax5z6fxXWiel
5tBRXPOTDGUNOE jK/Lg8duF SWrxy2uCPoXZTYCveM+JtEoDxfNUbSad4++3ucMyv
CLD@7dZcDG40qVQS30LqdDYFTk2/7VaebdEASRmrWO 15+gw41T9QvQeyptISSmWm
dKBY jVcCAwWnkuLwSCSCKvSNBQpcX61in@Uhri91MGEfAVQLERorrIWgqR//5d7Lk
TNHYmDsy TwwMr820JTPQbbtqZ7ISUQ==

=Hhk0O

----- END PGP SIGNATURE-----

[host poky]$ git verify-tag hardknott-3.3.4
gpg: Signature made Thu 18 Nov 2021 05:00:03
PM EST
gpg: using RSA key
4C00139568D89646CB3CB7855C6807D1C2797673
gpg: Can't check signature: No public key
[host poky]$ gpg2 --search-keys
0x4C00139568D89646CB3CB7855C6807D1C2797673
gpg: data source: https://162.213.33.9:443
(1) Yocto Build and Release
<releases@yoctoproject.org>

4096 bit RSA key 87EB3D32FB631AD9,
created: 2014-10-30
Keys 1-1 of 1 for
"0x4C00139568D89646CB3CB7855C6807D1C2797673" .
Enter number(s), N)ext, or Q)uit >

Yocto Project® | The Linux Foundation®

Offline Builds: Validating Your Sources

PGP signatures or checksums for your software sources

e Linux Kernel
e Mesa

Yocto Project® | The Linux Foundation®

https://www.kernel.org/category/signatures.html
https://gitlab.freedesktop.org/mesa/mesa/-/commit/bdf94921c02b82e0d5f67d7c1ee0aacbce336056

Offline Builds: Validating Your Sources

Yocto can enforce checksums:

e May be helpful if your project uses internally released
software

Yocto Project® | The Linux Foundation®

Overview: Security in Stages

Pre-production

o Integrating Security

Yocto Project® | The Linux Foundation®

Security Features: Image Contents

e Yoctorecipes are customizable, can add security oriented
features easily with meta-layers and bbappends
e meta-security
e Features added by meta-security
e dm-verity
e IMA/EVM
e Kernel Module Signing

Yocto Project® | The Linux Foundation®

Setting Up a Basic Build with meta-security

host
host
host

host

host

:~/example/$ git clone git://git.yoctoproject.org/poky

:~/example/$ git clone https://git.openembedded.org/meta-openembedded
:~/example/$. poky/oe-init-build-env

host:
NOTE:
:~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-python
NOTE:
:~/example/build$ bitbake-layers add-layer

~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-oe
Starting bitbake server...

Starting bitbake server...

. ./meta-openembedded/meta-networking

NOTE:
host:
NOTE:
host:

Starting bitbake server...

~/example/build$ bitbake-layers add-layer ../meta-openembedded/meta-perl
Starting bitbake server...

~/example/build$ bitbake-layers add-layer ../meta-security

Yocto Project® | The Linux Foundation®

Setting Up a Basic Build with meta-security

Meta-security provides a “harden-image-minimal” image
with basic security changes to “core-image-minimal”

host:~/example/build$ bitbake-layers add-layer ../meta-security/meta-hardening
NOTE: Starting bitbake server...

host:~/example/build$ echo "DISTRO_FEATURES += \" security \"" >> conf/local.conf
host:~/example/build$ bitbake harden-image-minimal

host:~/example/build$ 1ls tmp/deploy/images/qemux86-64/

bzImage

harden-image-minimal-gqemux86-64.ext4

Yocto Project® | The Linux Foundation®

Key Management / Signing Infrastructure

e We've generated the system image and root file system,
now how do we provide authenticity?
e Public Key Cryptography
e How do we keep the private key private?
e Secure Build Machine
e Signing Server

Yocto Project® | The Linux Foundation®

Implementing the “Secure Build Machine” Method

Let’s assume that we have our secure build machine

We want to create our own meta-layer that will integrate
the signing steps into our Yocto build so we only have to run
one command to get our desired output files

Yocto Project® | The Linux Foundation®

Creating a Custom Image with Signing Tasks

run.do_image

run.do_image_ext4

custom-image-signed.
do_image_complete

run.do_image_tar

bitbake custom-image-signed

Yocto Project® | The Linux Foundation®

Creating a Custom Image with Signing Tasks

run.do_image_ext4

run.do_image_sign

custom-image-signed.
do_image_complete

bitbake custom-image-signed

Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

require recipes-core/images/harden-image-minimal.bb

python _ anonymous () {
bb.build.addtask('do_image sign', 'do_image complete', 'do_image ext4', d)

}

PRIVATE_KEY = "${TOPDIR}/private.pem"

do_image sign() {
cd ${WORKDIR}/
openssl dgst -sha256 deploy-${PN}-image-complete/${PN}-${MACHINE}.ext4 > hash
openssl rsautl -sign -inkey ${PRIVATE KEY} -keyform PEM -in hash >
deploy-${PN}-image-complete/${PN}-${MACHINE}.ext4d.sig

}

Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

bitbake custom-image-signed
wc -c tmp/deploy/images/gqemux86-64/custom-image-signed-qemux86-64.ext4.sig
256 tmp/deploy/images/qgemux86-64/custom-image-signed-gemux86-64.ext4.sig

Yocto Project® | The Linux Foundation®

Create Our Custom Output Image Recipe

cat tmp/work/gemux86 64-poky-linux/custom-image-signed/1.0-r0/temp/log.task order
do_prepare_recipe sysroot (3787003): log.do _prepare_recipe_sysroot.3787003
do_rootfs (3787019): log.do rootfs.3787019

do_flush _pseudodb (3793153): log.do flush pseudodb.3793153

do _write gemuboot conf (3793154): log.do _write gemuboot conf.3793154
do_image ga (3793159): log.do_image ga.3793159

do_image (3793166): log.do image.3793166

do_image ext4 (3793173): log.do image ext4.3793173

do_image tar (3793174): log.do_image tar.3793174

do_image sign (3793214): log.do image sign.3793214

do_image complete (3793217): log.do_image complete.3793217
do_populate lic _deploy (3793231): log.do populate lic deploy.3793231
do_image sign (3793891): log.do image sign.3793891

do_image complete (3793906): log.do _image complete.3793906
do_populate lic deploy (3793918): log.do populate lic deploy.3793918

Yocto Project® | The Linux Foundation®

Overview: Security in Stages

Pre-production

o Supporting Infrastructure

Yocto Project® | The Linux Foundation®

Deploying Image Files: Secure Build Machine

e We've generated the signature file for our rootfs and our
kernel; now we need some way for our developers to get
the files

e Integrate with an external Cl platform
e SFTPserver
e SSH/SCP

Yocto Project® | The Linux Foundation®

Deploying Image Files: Signing Server

Deployment to Device or to
Developers

Yocto Build Sending the Files to the Server

In this workflow, we generate We would send it to our server Push to an automated test
the relevant kernel image and in the manner expected, along server and/or to a location
RFS with a typical bitbake with our developer developers can access.
command. credentials.

bitbake <image>

Yocto Project® | The Linux Foundation®

Overview: Security in Stages

e Production and Ongoing Support

Yocto Project® | The Linux Foundation®

Support: Choosing an LTS Release

Yocto has special LTS releases; use them if possible:

e Dunfell
e Kirkstone

https://wiki.yoctoproject.org/wiki/Releases

Yocto Project® | The Linux Foundation®

Over-the-air Firmware Updates, New Releases

Different strategies for new firmware images based on other
security choices:

e File-based Authentication: fs-verity, MA/EVM
e meta-swupdate
e meta-rauc
e meta-updater
e Block-based Authentication
e A/Bschemes

Yocto Project® | The Linux Foundation®

A/B Schemes

e The target system must validate the binary files against their
signatures:
e (Kernel) Image.sig->Image
e (RFS) RFS.sig->custom-image-signed.ext4
e We can package these together into an archive, which is
our update bundle

Yocto Project® | The Linux Foundation®

CVE Management

e Maintaining support means tracking and addressing

vulnerabilities
e Yocto project maintains its own CVE Checker
e Timesys provides one as well, meta-timesys

Yocto Project® | The Linux Foundation®

https://www.google.com/url?q=https://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/cve-check.bbclass&sa=D&source=editors&ust=1637704462964000&usg=AOvVaw1IaemKo0Tqi5C9qlFNy73X
https://github.com/TimesysGit/meta-timesys

References

For further reading:

® https://www.timesys.com/pdf/Timesys-Security-Primer-for-loT-Embedded-Devices.pdf

e https:/insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/

e https://owasp.org/www-community/Threat Modeling

e https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

e https://www.yoctoproject.org/docs/current/brief-yoctoprojectgs/brief-yoctoproject
gs.html

e https://elinux.org/images/3/31/Comparison of Linux Software Update Technologie
s.pdf

e Designing OSTree based embedded Linux systems with the Yocto Project

Yocto Project® | The Linux Foundation®

https://www.timesys.com/pdf/Timesys-Security-Primer-for-IoT-Embedded-Devices.pdf
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://owasp.org/www-community/Threat_Modeling
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://www.yoctoproject.org/docs/current/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://elinux.org/images/3/31/Comparison_of_Linux_Software_Update_Technologies.pdf
https://elinux.org/images/3/31/Comparison_of_Linux_Software_Update_Technologies.pdf
https://www.youtube.com/watch?v=3i48NbAS2jU

Timesys Security Survey

yocto - | Dliinux

PROIJECT

https://docs.google.com/forms/d/e/1FAIpQLSf4LlAZ0rhEvrRcSBATs36FJx9Daop1q5w50-4PLIZ6nwloGQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf4LlAZ0rhEvrRcSBATs36FJx9Daop1q5w50-4PLIZ6nwloGQ/viewform

o

https://www.twitch.tv/yocto_project
https://twitter.com/yoctoproject
https://stackoverflow.com/search?q=yocto+project
https://www.linkedin.com/company/yocto-project/
https://www.youtube.com/user/TheYoctoProject/

